Application of CRISPR/Cas9 in Breast Cancer Treatment: A Mini Review

Document Type : Review paper


1 Pediatric Department, University Hospital "Mother Teresa", Tirana, Albania

2 Management Committee Member, Global Research, Education, and Event Network (GREEN)


Breast cancer is the commonest cause of cancer death in women worldwide. Although impressive gains in breast cancer research and treatment have been made over the past decades, breast cancer treatment still remains a significant global challenge. Recently, application of gene editing tools, such as the CRISPR/Cas9 system, has shown a clinical potential to discover novel targets for cancer therapy. CRISPR is a family of DNA sequences found in the genomes of prokaryotic organisms. Cas9 is an enzyme that uses CRISPR sequences as a guide to recognize and cleave specific strands of DNA that are complementary to the CRISPR sequence. Cas9 enzymes together with CRISPR sequences form the basis of a technology known as CRISPR/Cas9 that is a genome editing tool used to edit parts of the genome. CRISPR/Cas9 could be a major step forward to cancer management by providing patients with an effective method for dealing with cancers by dissecting the carcinogenesis pathways, identifying new biologic targets, and perhaps arming cancer cells 
with drugs. Moreover, CRISPR/Cas9 can be employed to rapidly engineer immune cells for cancer immunotherapeutic applications. The CRISPR/Cas9 system has been reported to play an important role in preventing drug resistance in breast cancer. It has also been used to develop early breast cancer diagnostic tools and treatments. Despite the potential of CRISPR/Cas9 in breast cancer treatment, some challenges remain to be solved for clinical application of this system in breast cancer treatment. This review aims to present the application of CRISPR/Cas9 in breast cancer 


[1]. Coleman MP, Quaresma M, Berrino F, Lutz JM, De Angelis R, Capocaccia R, Baili P, Rachet B, Gatta G, Hakulinen T, Micheli A. Cancer survival in five continents: a worldwide populationbased study (CONCORD). The lancet oncology. 2008;9(8):730-56.
[2]. Anderson BO, Yip CH, Smith RA, Shyyan R, Sener SF, Eniu A, Carlson RW, Azavedo E, Harford J. Guideline implementation for breast healthcare in low‐income and middle‐income countries: Overview of the Breast Health Global Initiative Global Summit 2007. Cancer. 2008;113(S8):2221-43.
[3]. Peng J, Sengupta S, Jordan VC. Potential of selective estrogen receptor modulators as treatments and preventives of breast cancer. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2009;9(5):481-99.
[4]. Reeder JG, Vogel VG. Breast cancer prevention. Advances in Breast Cancer Management, Second Edition.2008:149-64.
[5]. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer. 2015;136(5):E359-86.
[6]. Bien AM, Korzynska-Pietas M, Iwanowicz-Palus GJ. Assessment of midwifery student preparation for performing the role of breast cancer educator. Asian Pacific Journal of Cancer Prevention. 2014;15(14):5633-8.
[7]. Bhurgri Y. Karachi cancer registry data--implications for the national cancer control program of pakistan. Asian Pac J Cancer Prev. 2004;5(1):77-82.
[8]. Khokher S, Qureshi MU, Riaz M, Akhtar N, Saleem A. Clinicopathologic profile of breast cancer patients in Pakistan: ten years data of a local cancer hospital. Asian Pacific Journal of Cancer Prevention. 2012;13(2):693-8.
[9]. Shaukat U, Ismail M, Mehmood N. Epidemiology, major risk factors and genetic predisposition for breast cancer in the Pakistani population. Asian Pacific Journal of Cancer Prevention. 2013;14(10):5625-9.
[10]. Kadivar M, Mafi N, Joulaee A, Shamshiri A, Hosseini N. Breast cancer molecular subtypes and associations with clinicopathological characteristics in Iranian women, 2002-2011. Asian Pacific Journal of Cancer Prevention. 2012;13(5):1881-6.
[11]. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of bacteriology. 1987;169(12):5429-33.
[12]. Riehle MM, Bennett AF, Long AD. Genetic architecture of thermal adaptation in Escherichia coli. Proceedings of the National Academy of Sciences. 2001;98(2):525-30.
[13]. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, Van Der Oost J. Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology. 2011;9(6):467-77.
[14]. DeBoy RT, Mongodin EF, Emerson JB, Nelson KE. Chromosome evolution in the Thermotogales: large-scale inversions and strain diversification of CRISPR sequences. Journal of bacteriology. 2006;188(7):2364-74.
[15]. Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular microbiology. 2002;43(6):1565-75.
[16]. Mojica FJ, Díez‐Villaseñor C, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Molecular microbiology. 2000;36(1):244-6.
[17]. Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005;151(3):653-63.
[18]. Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The biology of CRISPRCas: backward and forward. Cell. 2018;172(6):1239-59.
[19]. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJ, Charpentier E, Cheng D, Haft DH, Horvath P, Moineau S. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology. 2020;18(2):67-83.
[20]. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH, Horvath P. An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology. 2015;13(11):722-36.
[21]. Mojica FJ, Rodriguez‐Valera F. The discovery of CRISPR in archaea and bacteria. The FEBS journal. 2016;283(17):3162-9.
[22]. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709-12.
[23]. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dualRNA–guided DNAendonuclease in adaptive bacterial immunity. science. 2012;337(6096):816-21.
[24]. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819-23.
[25]. Esvelt KM, Smidler AL, Catteruccia F, Church GM. Emerging technology: concerning RNAguided gene drives for the alteration of wild populations. elife. 2014;3:e03401.
[26]. Cyranoski D, Reardon S. Chinese scientists genetically modify human embryos. Nature. 2015;22:2015.
[27]. Kofler N, Kraschel KL. Treatment of heritable diseases using CRISPR: Hopes, fears, and reality. InSeminars in perinatology 2018;(Vol. 42, No. 8, pp. 515-521). WB Saunders.
[28]. Hong A. CRISPR in personalized medicine: Industry perspectives in gene editing. InSeminars in perinatology 2018;(Vol. 42, No. 8, pp. 501-507). WB Saunders.
[29]. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149-57.
[30]. Kaiser J. Tweaking genes with CRISPR or viruses fixes blood disorders. 2020.
[31]. Corbacioglu S, Cappellini MD, Chapin J, Chu-Osier N, Fernandez CM, Foell J, Fuente J, Grupp S, Ho TW, Kattamis A. Initial safety and efficacy results with a single dose of autologous CRISPR-Cas9 modified CD34+ hematopoietic stem and progenitor cells in transfusion-dependent β-thalassemia and sickle cell disease. EHA Library. 2020;295100:S295280.
[32]. Demirci S, Leonard A, Haro-Mora JJ, Uchida N, Tisdale JF. CRISPR/Cas9 for sickle cell disease: applications, future possibilities, and challenges. Cell Biology and Translational Medicine, Volume 5. 2019:37-52.
[33]. Song B, Fan Y, He W, Zhu D, Niu X, Wang D, Ou Z, Luo M, Sun X. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem cells and development. 2015;24(9):1053-65.
[34]. Raaijmakers RH, Ripken L, Ausems CR, Wansink DG. CRISPR/Cas applications in myotonic dystrophy: expanding opportunities. International journal of molecular sciences. 2019;20(15):3689.
[35]. Qin Y, Li S, Li XJ, Yang S. CRISPR-Based Genome-Editing Tools for Huntington’s Disease Research and Therapy. Neuroscience Bulletin. 2022:1-2.
[36]. Bhardwaj S, Kesari KK, Rachamalla M, Mani S, Ashraf GM, Jha SK, Kumar P, Ambasta RK, Dureja H, Devkota HP, Gupta G. CRISPR/Cas9 gene editing: New hope for Alzheimer's disease therapeutics. Journal of Advanced Research. 2021.
[37]. Rezaei H, Farahani N, Hosseingholi EZ, Sathyapalan T, hossein Sahebkar A. Harnessing CRISPR/Cas9 technology in cardiovascular disease. Trends in cardiovascular medicine. 2020;30(2):93-101.
[38]. Sharma G, Sharma AR, Bhattacharya M, Lee SS, Chakraborty C. CRISPR-Cas9: a preclinical and clinical perspective for the treatment of human diseases. Molecular Therapy. 2021;29(2):571-86.
[39]. Marangi M, Pistritto G. Innovative therapeutic strategies for cystic fibrosis: moving forward to CRISPR technique. Frontiers in pharmacology. 2018;9:396.
[40]. Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, Miao X, Streithorst JA, Granados A, SotomayorGonzalez A, Zorn K. CRISPR–Cas12-based detection of SARS-CoV-2. Nature biotechnology. 2020;38(7):870-4.
[41]. Katti A, Diaz BJ, Caragine CM, Sanjana NE, Dow LE. CRISPR in cancer biology and therapy. Nature Reviews Cancer. 2022;22(5):259-79.
[42]. Padayachee J, Singh M. Therapeutic applications of CRISPR/Cas9 in breast cancer and delivery potential of gold nanomaterials. Nanobiomedicine. 2020;7:1849543520983196.
[43]. Pezzella F, Tavassoli M, Kerr DJ, editors. Oxford textbook of cancer biology. Oxford University Press; 2019.
[44]. Hu Z, Yu L, Zhu D, Ding W, Wang X, Zhang C, Wang L, Jiang X, Shen H, He D, Li K. Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. BioMed research international. 2014;2014.
[45]. Cai J, Huang S, Yi Y, Bao S. Ultrasound microbubble-mediated CRISPR/Cas9 knockout of C-erbB-2 in HEC-1A cells. Journal of International Medical Research. 2019;47(5):2199-206.
[46]. Kawamura N, Nimura K, Nagano H, Yamaguchi S, Nonomura N, Kaneda Y. CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget. 2015;6(26):22361.
[47]. Narimani M, Sharifi M, Jalili A. Knockout of BIRC5 gene by CRISPR/Cas9 induces apoptosis and inhibits cell proliferation in leukemic cell lines, HL60 and KG1. Blood and Lymphatic Cancer: Targets and Therapy. 2019;9:53.
[48]. Pranavathiyani G, Thanmalagan RR, Devi NL, Venkatesan A. Integrated transcriptome interactome study of oncogenes and tumor suppressor genes in breast cancer. Genes & diseases. 2019;6(1):78-87.
[49]. Wang H, Sun W. CRISPR-mediated targeting of HER2 inhibits cell proliferation through a dominant negative mutation. Cancer letters. 2017;385:137-43.
[50]. Duong‐Ly KC, Peterson JR. The human kinome and kinase inhibition. Current protocols in pharmacology. 2013;60(1):2-9.
[51]. Paul MK, Mukhopadhyay AK. Tyrosine kinase–role and significance in cancer. International journal of medical sciences. 2004;1(2):101.
[52]. Hynes NE. Tyrosine kinase signalling in breast cancer. Breast cancer research. 2000;2(3):1-4.
[53]. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer cell. 2015;27(4):450-61.
[54]. Sobral-Leite M, Van de Vijver K, Michaut M, van der Linden R, Hooijer GK, Horlings HM, Severson TM, Mulligan AM, Weerasooriya N, Sanders J, Glas AM. Assessment of PD-L1 expression across breast cancer molecular subtypes, in relation to mutation rate, BRCA1-like status, tumor-infiltrating immune cells and survival. Oncoimmunology. 2018;7(12):e1509820.
[55]. Yuan C, Liu Z, Yu Q, Wang X, Bian M, Yu Z, Yu J. Expression of PD-1/PD-L1 in primary breast tumours and metastatic axillary lymph nodes and its correlation with clinicopathological parameters. Scientific reports. 2019;9(1):1-8.
[56]. Zhang M, Sun H, Zhao S, Wang Y, Pu H, Zhang Q. Expression of PD-L1 and prognosis in breast cancer: a meta-analysis. Oncotarget. 2017;8(19):31347.
[57]. Li YC, Zhou Q, Song QK, Wang RB, Lyu S, Guan X, Zhao YJ, Wu JP. Overexpression of an immune checkpoint (CD155) in breast cancer associated with prognostic significance and exhausted tumor-infiltrating lymphocytes: a cohort study. Journal of immunology research. 2020;2020.
[58]. Yahata T, Mizoguchi M, Kimura A, Orimo T, Toujima S, Kuninaka Y, Nosaka M, Ishida Y, Sasaki I, Fukuda‐Ohta Y, Hemmi H. Programmed cell death ligand 1 d isruption by clustered regularly interspaced short palindromic repeats/Cas9‐genome editing promotes antitumor immunity and suppresses ovarian cancer progression. Cancer Science. 2019;110(4):1279-92.
[59]. Zhao Z, Shi L, Zhang W, Han J, Zhang S, Fu Z, Cai J. CRISPR knock out of programmed cell death protein 1 enhances anti-tumor activity of cytotoxic T lymphocytes. Oncotarget. 2018;9(4):5208.
[60]. Deng H, Tan S, Gao X, Zou C, Xu C, Tu K, Song Q, Fan F, Huang W, Zhang Z. Cdk5 knocking out mediated by CRISPR-Cas9 genome editing for PD-L1 attenuation and enhanced antitumor immunity. Acta Pharmaceutica Sinica B. 2020;10(2):358-73.
[61]. Tu K, Deng H, Kong L, Wang Y, Yang T, Hu Q, Hu M, Yang C, Zhang Z. Reshaping tumor immune microenvironment through acidity-responsive nanoparticles featured with CRISPR/Cas9-mediated programmed death-ligand 1 attenuation and chemotherapeutics-induced immunogenic cell death. ACS applied materials & interfaces. 2020;12(14):16018-30.
[62]. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dualRNA–guided DNAendonuclease in adaptive bacterial immunity. science. 2012;337(6096):816-21.
[63]. Guo X, Wang X, Wang Z, Banerjee S, Yang J, Huang L, Dixon JE. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nature cell biology. 2016;18(2):202-12

Volume 1, Issue 3
(Special Issue: papers selected from ICLS22, Istanbul, Turkey)
Pages 104-113
  • Receive Date: 10 September 2022
  • Revise Date: 15 September 2022
  • Accept Date: 05 October 2022