

Available online at www.jobiost.com IJBLS 2023; 2(1):91-91

Abstract

Organotin (IV) N-Ethyl-N-Benzyldithiocarbamates Complexes: Synthesis, Characterization, and Their Cytotoxicity against A549 Human Lung Cancer Cell Line

Nurul Amalina Abd Aziz¹, Normah Awang¹*, Kok Meng Chan¹, Nurul Farahana Kamaludin¹, Nur Najmi Mohamad Anuar¹, Yee Seng Tan², Edward R. T. Tiekink², Chien Ing Yeo², Sang Loon Tan²

¹ Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

Received: 23 June 2023 Revised: 25 June 2023 Accepted: 7 July 2023

Abstract

Background and Aim: Organotin derivatives are promising agents which have been shown to be effective against different types of cancer cells in vitro. In this work, two new organotin (IV) *N*-alkyl-*N*-benzyldithiocarbamates complexes, namely dimethyltin (IV) *N*-ethyl-*N*-benzylditihocarbamate (OTC 1), triphenyltin (IV) *N*-ethyl-*N*-benzylditihocarbamate (OTC 2) were synthesized and screened for their cyotoxictiy effects.

Method: These compounds were characterized by elemental analysis and spectroscopic (FT-IR, NMR and UV-VIS). The single crystal structure was determined by X-ray single crystal analysis. Anticancer properties of the compounds were investigated in vitro on the human lung carcinoma (A549) cell lines via MTT assay.

Results: The elemental analysis shows in agreement with the suggested formulae of $(CH_3)_2Sn[S_2CN(CH_3CH_2(C_6H_5)(CH_2)]_2$ (OTC 1) and $(C_6H_5)_3Sn[S_2CN(CH_3CH_2(C_6H_5)(CH_2)]$ (OTC 2). The spectral bands of FTIR showed that the thioureide bands, v (C=N) appeared in the region 1489-1426 cm⁻¹ and v (C=S) bands in the region of 1001-997 cm⁻¹. The ¹³C NMR chemical shift of the NCS₂ group for OTC 1 and OTC 2 complexes were fall at 197.37 ppm and 200.80 ppm, respectively. X-ray crystallography studies showed the tetra-coordinated geometry for both compounds. OTC 1 show no significant cytotoxic activity (IC₅₀: > 100 μM), whereby OTC 2 (IC₅₀: 1.58 μM) exhibit higher cytotoxicity activity toward A549 cell lines as compared to the commercial chemotherapeutic drug, cisplatin (IC₅₀: 32 μM).

Conclusion: In conclusion, triphenyltin (IV) complex can be a potential anticancer agents and further studies on the mechanism of these compounds inducing cytotoxic effects should be carried out in future.

Keywords: Organotin (IV), Dithiocarbamate, Synthesis, Characterisation, Cytotoxicity

*Corresponding author: Normah Awang, Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.

E-mail address: norm@ukm.edu.my

² Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia